
Tips & Tricks for 
Effective GitHub Project 

Management
BY DANIEL COSTANTIN



Before I Begin
The views and opinions expressed in this presentation are that of my own and do not reflect that 
of my employers (past and present).

This presentation is based on my own experience, research and experimentation.



Who am I?
• Daniel Costantin

• Industry Experience
• Tech Architecture Specialist at Accenture (1 year and 10 months)
• Senior Platform Engineer at Harvest Technology (1 year and 5 months)
• Senior Associate at PricewaterhouseCoopers Australia (5 years)
• Casual Academic (tutor) at Edith Cowan University (2 years)

• Education
• Master of Cyber Security – Edith Cowan University
• Bachelor of Commerce (Business Information Technology and Systems) – 

Curtin University



Cloud Focused

Cyber Security 
Focused

Who am I? (Continued)



Presentation Overview
1. Planning and Communication

2. Project Management Strategies

3. Team Standards

4. Git and Project Management Platforms

5. Git Strategies

6. GitHub Actions

7. Demonstration



What this Presentation Will Cover
Non-Technical GitHub Strategies

Technical GitHub Strategies



Project Planning
• By far the most important thing

• Most common thing that is overlooked

• Without proper planning, your project will fail!



Team Collaboration
• Communicate, communicate, communicate!

• Don’t be afraid to ask for help / clarification

• This also includes communicating with your 
customer



Project Management Strategies

Traditional
AgileScrum



Traditional (Waterfall) Approach



Traditional (Waterfall) Approach



Scrum Methodology



Agile Philosophy
• Most project managers don’t fully 

understand Agile

• Incorrectly used in the industry

• It is a philosophy, not a methodology!



Agile VS Waterfall
Waterfall / Traditional

• Processes and tools

• Comprehensive documentation

• Contract negotiation

• Following a plan

Agile

• Individuals and interactions

• Working software

• Customer collaboration

• Responding to change



Important Links

Manifesto for 
Agile Software 
Development

Amazon 
Leadership 
Principles



Working as a Team
• Managing a project is one thing

• Effectively working together as a 
team can be a completely 
different challenge



Working as an Effective Team



When it all Goes Wrong



Did You Sign the Contract?
• How many of you have discussed a 

team contract?

• Not required for team projects, but 
can be very helpful when people 
don’t perform



Git Platforms



Managing Your Project



Example Jira Board – During Scrum



Example Jira board – During Scrum



Example Jira Board – Backlog



Example Jira board – Backlog



Example Trello Board



Example Trello board



Example GitHub Projects Board – 
Standup



Example GitHub Projects board – 
Standup



Example GitHub Projects Board – The 
Plan



Example GitHub Projects board – The 
Plan



Helpful Links

The Dev Board The KANBAN 
Board

Build a 
Barker MVP

35 Example 
Trello Boards

About GitHub 
Projects



How Standard is Your Team?
• Another important thing to consider before 

and during your project

• Make sure you adhere to them

• Add controls and processes to ensure you are 
following them



Coding Standards

C Standards C# Standards C++ Standards Node.js 
Standards

Python 
Standards



Can We all Agree to Commit?
• Did you know, there are standards for git 

commit messages as well?

• Proper git commit messages can help 
when:
• Reviewing or retrieving old versions of code
• Reviewing other developers code



Examples of Good Commit Messages
• git commit -m “Added tax calculation function”

• git commit -m “Added tax calculation unit tests”

• git commit -m “Imported common libraries”

• git commit -m “Fixed logic evaluation bug”

• git commit -m “feat: example hello world api endpoint”

• git commit -m “feat(1234): added authentication logic to api endpoint”

• git commit -m “documentation(5432): added docker build and run commands”



Examples of Bad Commit Messages
• git commit -m “added stuff”

• git commit -m “test”

• git commit -m “test”

• git commit -m “test”

• git commit -m “a”

• git commit -m “b”

• git commit -m “c”

• git commit –m “”



Git Standards References

Amazon Web 
Services GitHub 

Repositories

Conventional 
Commits

Git commit 
message 

convention

Microsoft GitHub 
Repositories



Do you have a Code Review Process?
• What checks (if any) will you include in pull 

requests?

• What merge rules (if any) will you include in pull 
requests?

• Do all pull requests need to be reviewed or only 
certain branches?

• What if a developer is not familiar with a particular 
language? What happens to approvals?

• Is there a process if you need to merge a pull 
request immediately?



GitHub Issue and Pull Request Templates
• Did you know, you can create custom 

templates for Issues and Pull Requests?

• Makes it easier for all developers to follow 
the same style / format when creating Pull 
Requests or reporting Issues



Example Pull Request Template



Example Pull Request template



Example Issues Template – Part 1



Example Issues template – Part 1



Example Issues Template – Part 2



Example Issues template – Part 2



Creating GitHub Templates

Configuring 
GitHub Issue 

Templates

Configuring 
GitHub Pull 

Request 
Templates



Git with the Flow
• Provides better control over your code

• Two ways to do this:
• Gitflow
• Trunk based

• Very important to your health and sanity



Gitflow 101



Gitflow 101

Animated 
Gitflow



Trunk Based Development



Additional Git Branches
• bugfix/

• documentation/

• emergency/

• experimental/

• feature/

• hotfix/

• security/

• You can use whatever you like, but you must 
agree as a team on what branch names to use 
and their purpose



Examples of Good Branches
• git checkout –b feature/upload-profile-picture

• git checkout –b feature/containerise-application

• git checkout –b bugfix/json-parsing-issue

• git checkout –b release/codename-alpha

• git checkout –b hotfix/incorrectly-declared-class

• git checkout –b experimental/additional-encryption-ciphers

• git checkout –b refactor/authentication-evaluation

• git checkout –b documentation/pipeline-instructions



Examples of Good Branches (Continued)
• git checkout –b feature/ID-1234/add-product-api

• git checkout -b feature/ID-5432/list-product-api

• git checkout –b feature/backend/pipeline

• git checkout –b feature/backend/database

• git checkout –b feature/backend/password-store

• git checkout –b feature/frontend/main-website

• git checkout –b feature/frontend/store-page



Examples of Bad Branches
• git checkout –b stuff

• git checkout –b stuff2

• git checkout –b test

• git checkout –b feature/implement-iso-compliance-control-page-10-control-27



Git Branches in Linux Terminal

Git Branch in 
Linux 

Terminal



Git Branches in Visual Studio



Git Branching References

Git Branching 
Naming 

Convention 
Best Practices

Gitflow 
Workflow

GitHub 
Branching

GitHub 
Branching Best 

Practices

Trunk-based 
Development VS 

Gitflow



Tag, you’re it (with Git)
• Similar to commits, you can also tag your code

• Normally done with stable code that is ready to 
be shipped / deployed

• Common tagging methods:
• v1.2.3
• 1.2.3

• You can revert back to these tags in the future:

• git checkout v1.0

V1.0



Gitflow 101

Animated 
Gitflow



Git Tag References

Git tag 
naming 

convention

Git tags What are git 
tags



Branches and CI / CD Pipelines
• CI / CD = Continuous Integration and Continuous 

Delivery / Continuous Deployment

• Part of the DevOps mantra

• Automate a much as you can!

• Provides instant feedback to developers

• Innovate faster!



Example CI / CD Pipelines with GitHub





AWS CodePipeline – Success



AWS CodePipeline – Failure





Pipeline Notifications



Lights, Camera, GitHub Actions!
• Similar to your CI / CD pipelines, did you 

know you can also get GitHub to perform 
some automations?

• For example:
• Run unit tests
• Build Docker containers
• Perform code review(s) / linting
• Enforcing code standards / formatting
• Update ticketing systems
• Perform security dependency scanning



Example GitHub Actions Apps



Example GitHub Actions – Workflow 1



Example GitHub Actions – Workflow 2



GitHub Actions References

GitHub 
Actions

GitHub Actions 
Documentation

GitHub Actions 
Marketplace



Submitting your Pull / Merge Request
• There is no right or wrong way to create 

pull requests

• You can reference commits, issues and 
close issues when a pull request is 
merged.

• Make sure you delete your branch once 
the pull request has been merged!



Bad Pull Request Example



Bad Pull Request example



Good Pull Request Example





Pull Request Controls / Checks



Pull Request Courtesy
• Pull requests are opportunities for you to 

learn and grow as a developer

• It is not a blame game or “my code is 
better than yours”

• Call out anything that is clearly bad

• Be open to improvements and 
constructive criticism



Resolving Merge Conflicts
• Refrain from “I know what I’m doing, I 

don’t need to ask for help”

• If you make small changes and merge 
often, you can avoid this

• Don’t make too many different changes in 
your branches

• Talk to your fellow developers!



Resolving Merge Conflicts – Commands
• git checkout feature/image-resizer

• git pull origin develop

• Make edits to the affected file(s)

• git add --all

• git commit -m "Resolved merge conflicts"

• git push



Resolving Merge Conflicts – VS Code



Is your Commit Worthy?
• We have talked about git commit and 

commit messages

• git relies heavily on the developer

• What happens if you commit the 
following?:
• Passwords or API keys
• Failing unit tests
• Code that is not compliant to coding 

standards

• You can configure Git Hooks to perform 
actions / checks on certain actions



Git Pre-Commit Hook – Example 1



Git Pre-Commit Hook – Example 2



Git Hook Software

Husky
pre-commit



Adding DevSecOps to your Project



Example Dependabot Alerts



Dependabot Pull Request



Dependabot Pull Request



My Final Tips and Tricks
• Make sure you put some time aside to 

plan your work!

• Make sure your Proof of Concept (PoC) 
works first!

• Keep it simple!

• Get feedback from your customer

• Communicate as much as necessary

• Raise issues / concerns early



Live Demonstration Time

Demo Website:
http://demo.blucloudengineer.com/



Final References

Git Explained 
in 100 

Seconds

GitHub Pull 
Request in 

100 Seconds

How to Fork a 
GitHub 

Repository

My GitHub



Got any Feedback for Me?

Feedback Website:
https://feedback.blucloudengineer.com/



Questions?


